
Prediction of Software Reliability: A Comparison between
Regression and Neural Network Non-Parametric Models

Sultan H. Aljahdali Alaa Sheta David Rine
School of Information Tech. Computers and Systems Dept; Computer Science Dept.
George Mason University Electronics Research Institute George Mason University
Fairfax, VA 22030, USA Cairo, Egypt Fairfax, VA 22030, USA

saljahdali@gmu.edu ashetal@eri.sci.eg Drine@cs.gmu.edu

Abstract- In this paper neural networks have
been proposed as an alternative technique to
build software reliability growth models. A feed-
forward neural network was used to predict the
number of faults initially resident in a program at
the beginning of a test/debug process. To eval-
uate the predictive capability of the developed
model data sets from various projects were used
[l]. A comparison between regression parametric
models and neural network models is provided.

1 Introduction

The problem of developing reliable software at a low
cost’remains as an open challenge. To develop a re-
liable software system, we must address several issues.
These include specification of reliable software, reliable
development methodologies, testing methods for reliabil-
ity, reliability growth prediction modeling, and accurate
estimation of reliability [2, 31. The issue of finding a
common model for all possible software projects is yet
to solved. Selection of a particular model is very im-
portant in software reliability growth prediction because
both the release date and the resource allocation decision
can be affected by the accuracy of prediction. Existing
analytic models describe the failure process as a func-
tion of execution time (or calendar time) and a set of
unknown parameters [4, 5 , 61.

Artificial Neural Networks (ANNs) have been used
both to estimate parameters of a formal model and to
learn to emulate the process model itself to predict future
outcomes. Recently, the use of neural networks in soft-
ware reliability prediction have been explored in many
publications [7,8]. In this paper we focus on the problem
of developing non-parametric software reliability models
using NNs. The main goal is to develop a linear neural
network model structure that can provide an efficient
prediction capability than traditional parametric mod-
els. Most of the published literature used the a single
input and single output NNs to build growth models. In
our case we are using multiple delayed input of the ob-
served faults in a test/debug process as input to the NN.
A feedforward neural network trained using backpropa-
gation learning algorithm was used.

2 Software Reliability Data Set

John Musa of Bell Telephone Laboratories compiled a
software reliability database [l]. His objective was to
collect failure interval data to assist software managers
in monitoring test status, predicting schedules and to
assist software researchers in validating software relia-
bility models. These models are applied in the discipline
of software reliability engineering. The dataset consists
of software failure data on 16 projects. Careful controls
were employed during data collection to ensure that the
data would be of high quality. The data was collected
throughout the mid 1970s. It represents projects from
a variety of applications including real time command
and control, word processing, commercial, and military
applications. In our case, we used data from three dif-
ferent projects. They are Military, Real Time Control
and Operating System.

3 Regression Models

Linear least squares regression analysis is still the most
common technique used to estimate linear models as ob-
served in the literature [9]. Much of the appeal of this
technique lies with its simplicity and also its easy acces-
sibility from many of the popular statistical packages.
The AR model can be described by the the following
equation:

n

P(k) = a0 +Cad@ - a >
i= 1

where P(k - i) is the previous observed number of faults
and (i = 1,2, .., n). The value of n is referred to as the
“order” of the model. a0 and ai, (i = 1,2, ..,n) are the
model parameter.

4 Evaluation Criterion

We used an evaluation criterion for each developed model
to measure its performance. The criterion of evaluation
(i.e. performance) was defined as the Sum Square Error
(SSE). The equation which governs the SSE is as follows:

S S E = C(P(i) - p (i)) 2
m

2

470

mailto:saljahdali@gmu.edu
mailto:Drine@cs.gmu.edu

pi is the observed faults and f i is the predicted faults for
the given model structure. m is the number of observa-
tions.

5 Prediction Using LSE

We developed an AR model of order four to predict the
software reliability for test/debug data of a program for
real time control. The model structure is given by the
following equation.

B (k) = a0 + UlP(k - 1) + aaP(k - 2)
asP(k - 3) + a 4 4 k - 4) +

LSE has been used to identify the values of the param-
eters a. A data set represents 70% of the collected data
were used in the training phase. To verify the results of
the parameter estimation process, the model has been
tested with another set that represents 30% of the col-
lected data for various projects. The results of parame-
ter estimation procedure are given in Table 1. The sum
square error of the training and testing, in regression
model case, is given in Table 2.

6 Prediction Using NNs

6.1 Network Structure

The architecture of the network used for modeling the
real time control program is a multi-layer feedforward
network. It consists of an input layer, one hidden layer,
and an output layer. The input layer contains a number
of neurons equal to the number of delayed measurements
allowed to build the network model. In our case, there
are four inputs to the network. They are p(i-l), p (i - 2) ,
p(i - 3) and p(i - 4). p (i - 1) is the observed faults per
day before the current day. The hidden layer consists of
two nonlinear neurons connected to p (i - 1) and @(i - 2)
and two linear hidden neurons connected to p (i - 3) and
p (i - 4). The output layer consists of one linear output
neuron producing the estimated value of the fault. The
hidden units are fully connected to both the input and
output. The hidden and output layers nodes have linear
activation functions.

6.2 Training and Testing

The neural network was trained with different sets of ini-
tial weights until the best set of weights were calculated.
The SSE was minimized to a small value. We used the
NNs weights developed from the training case to test the
network performance. The NNs model has been tested
with the rest of the collected data which represents 30%
of the collected data set. The sum square error of the
training and testing, in NN case, is given in Table 2. In
Figures 1 to 6 we are showing the training and testing
results for various projects using NNs. Also, the predic-
tion error in each case is provided.

Actual and estimated responses using NNc Training case
l e

~

471

10 20 30 40 50 60 70

Enor difference

I I ' I I I I I I

6 t I I

10 20 30 40 50 60 70

Figure 1: (a) Actual and Estimated Faults (b) Prediction
error: Military Application

Actual and Estimated responses using NNs- Testing case
350 I I I

..,"
75 80 85 90 95 100 105

Error difference
I I I I I 1

-10 I I I I I

75 80 85 90 95 100 105

Figure 2: (a) Actual and Estimated Faults (b) Prediction
error: Military Application

Project Name I a0

Military I 3.7427
I Real Time Control i 2.3977 i 0.8898 i 0.0730 i -0.1549 i 0.1612 I

a1 a2 a3 1 a4

1.0087 -0.0181 -0.2301 1 0.2249

I Operating System I 0.4034 I 1.0621 I -0.0841 I 0.2673 I -0.2392
I I I I I

, I v I Project Name I SSE-AR4
I Military I 5.7092

Table 1: Results for the estimation of a's using LSE

"

SSE-NNs SSE-AR4 SSE-NNs
5.5409 168.541 160.3887

I I Training I I I Testinp: I I

Real Time Control
Operating System

2.4745 1.7988 1.3680 1.2542
4.3482 4.2928 10.8850 9.9623

Table 2: A Comparison between AR4 and NN models in both training/testing cases

Actual and estimated responses using NNs- Training case

Emr difference

Actual and Mimaled reswnses mina NNs- Testina case

""I I

I I . I

I I

70 ' I , I I ! ! I I
100 105 110 115 120 125 130 135 140

-I 100 105 110 115 120 125 130 135 140

Figure 3: (a) Actual and Estimated Faults (b) Prediction
error: Real Time Control Application

Figure 4: (a) Actual and Estimated Faults (b) Prediction
error: Real Time Control Application

472

Adual and esfnnated responses using NNs- Training case
I I I I I I

250

m-

150

100

-

-

-

E] -
I I I

20 40 60 80 100 120 140 160 180

E m difference

7 Conclusions and Future Work

We have shown that neural network can be used for
building software reliability growth models. NNs were
able to provide models with small SSE than the regres-
sion model in all considered cases. If a regression model
with higher order have been considered probably less
SSE is obtained. However, the number of the regression
model parameters will be increased. This will require
more observations for providing reliable estimate of the
parameters. At present, we are investigating the use of
evolutionary computations in to solve the software reli-
ability growth modeling problem.

5

0

-10 -I

8 Acknowledgment

This research was developed while Dr. Sheta was a Vis-
iting Scientist from the Electronics Research Institute
(ERI), Cairo, Egypt to the ECE Dept., George Mason
University, VA, USA under the NSF Grant No. INT-
0000109.

20 40 60 80 100 120 140 160 180

Figure 5: (a) Actual and Estimated Faults (b) Prediction
error: Operating System Application

Actual and Estimated responses usrng NNs- Tesbng case
500 I I I , I I , I I

I I I I I I I I I
190 200 210 220 230 240 250 260 270 280

Error difference
151 I I I I I I I I I

10 I I J

-U

190 200 210 220 230 240 250 260 270 280

Figure 6: (a) Actual and Estimated Faults (b) Prediction
error: Operating System Application

Bibliography
J. Musa, “Data analysis center for software: An in-
formation analysis center,” Western Michigan Uni-
versity Libraray, Kalamazoo, Michigan, 1980.

S. Brocklehurst, P. Y. Chan, B. Littlewood, and
J. Snell, “Recalibrating software reliability models,”
IEEE Trans. Software Engineering, vol. 16, pp. 458-
470, 1990.

M. R. Lyu, Handbook of Software Reliability Engi-
neering. IEEE Computer Society Press, McGraw
Hill, 1996.

B. Littlewood and J. L. Verall, “A bayesian reliability
model with a stochastically monotone failure rate,”
IEEE Trans. Relibaility, vol. 23, pp. 108-114, 1974.

J. D. Musa, “A theory of software reliability and
its application,” IEEE Trans. Software Engineering,

J. D. Musa and K. Okumoto, “A logarithmic Poisson
execution time model for software reliability mea-
surement,” in Proceedings of the 7 th Inter. Conf.
Software Engineering, pp. 475-478, 1984.

N. Karunanithi, D. Whitely, and M. K., “Prediction
of software reliability using connectionist models,”
IEEE Transactions on Software Engineering, vol. 18,
no. 7, pp. 563-574, 1992.
R. Sitte, “Comparison of software reliability growth
predictions: Neural networks vs parametric recali-
bration,” IEEE Transactions on Reliability, vol. 48,
no. 3, pp. 285-291,1999.

M. Tummala, “Efficient iterative methods for FIR
least squares identification,” IEEE Transaction
Acoust., Speech, Signal Processing, vol. 38, no. 5,

vol. 1, pp. 312-327, 1975.

pp. 887-890, 1990.

473

