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Abstract- In this paper neural networks have 
been proposed as an alternative technique to 
build software reliability growth models. A feed- 
forward neural network was used to predict the 
number of faults initially resident in a program at 
the beginning of a test/debug process. To eval- 
uate the predictive capability of the developed 
model data sets from various projects were used 
[l]. A comparison between regression parametric 
models and neural network models is provided. 

1 Introduction 

The problem of developing reliable software at a low 
cost’remains as an open challenge. To develop a re- 
liable software system, we must address several issues. 
These include specification of reliable software, reliable 
development methodologies, testing methods for reliabil- 
ity, reliability growth prediction modeling, and accurate 
estimation of reliability [2, 31. The issue of finding a 
common model for all possible software projects is yet 
to solved. Selection of a particular model is very im- 
portant in software reliability growth prediction because 
both the release date and the resource allocation decision 
can be affected by the accuracy of prediction. Existing 
analytic models describe the failure process as a func- 
tion of execution time (or calendar time) and a set of 
unknown parameters [4, 5 ,  61. 

Artificial Neural Networks (ANNs) have been used 
both to estimate parameters of a formal model and to 
learn to emulate the process model itself to predict future 
outcomes. Recently, the use of neural networks in soft- 
ware reliability prediction have been explored in many 
publications [7,8]. In this paper we focus on the problem 
of developing non-parametric software reliability models 
using NNs. The main goal is to develop a linear neural 
network model structure that can provide an efficient 
prediction capability than traditional parametric mod- 
els. Most of the published literature used the a single 
input and single output NNs to build growth models. In 
our case we are using multiple delayed input of the ob- 
served faults in a test/debug process as input to the NN. 
A feedforward neural network trained using backpropa- 
gation learning algorithm was used. 

2 Software Reliability Data Set 

John Musa of Bell Telephone Laboratories compiled a 
software reliability database [l]. His objective was to 
collect failure interval data to assist software managers 
in monitoring test status, predicting schedules and to 
assist software researchers in validating software relia- 
bility models. These models are applied in the discipline 
of software reliability engineering. The dataset consists 
of software failure data on 16 projects. Careful controls 
were employed during data collection to ensure that the 
data would be of high quality. The data was collected 
throughout the mid 1970s. It represents projects from 
a variety of applications including real time command 
and control, word processing, commercial, and military 
applications. In our case, we used data from three dif- 
ferent projects. They are Military, Real Time Control 
and Operating System. 

3 Regression Models 

Linear least squares regression analysis is still the most 
common technique used to estimate linear models as ob- 
served in the literature [9]. Much of the appeal of this 
technique lies with its simplicity and also its easy acces- 
sibility from many of the popular statistical packages. 
The AR model can be described by the the following 
equation: 

n 

P(k)  = a0 +Cad@ - a >  
i= 1 

where P(k - i) is the previous observed number of faults 
and (i = 1,2,  .., n).  The value of n is referred to  as the 
“order” of the model. a0 and ai, (i = 1,2,  ..,n) are the 
model parameter. 

4 Evaluation Criterion 

We used an evaluation criterion for each developed model 
to measure its performance. The criterion of evaluation 
(i.e. performance) was defined as the Sum Square Error 
(SSE). The equation which governs the SSE is as follows: 

S S E  = C(P(i) - p ( i ) ) 2  
m 
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pi is the observed faults and f i  is the predicted faults for 
the given model structure. m is the number of observa- 
tions. 

5 Prediction Using LSE 

We developed an AR model of order four to predict the 
software reliability for test/debug data of a program for 
real time control. The model structure is given by the 
following equation. 

B ( k )  = a0 + UlP(k - 1) + aaP(k - 2) 
asP(k - 3) + a 4 4 k  - 4) + 

LSE has been used to identify the values of the param- 
eters a. A data set represents 70% of the collected data 
were used in the training phase. To verify the results of 
the parameter estimation process, the model has been 
tested with another set that represents 30% of the col- 
lected data for various projects. The results of parame- 
ter estimation procedure are given in Table 1. The sum 
square error of the training and testing, in regression 
model case, is given in Table 2. 

6 Prediction Using NNs 

6.1 Network Structure 

The architecture of the network used for modeling the 
real time control program is a multi-layer feedforward 
network. It consists of an input layer, one hidden layer, 
and an output layer. The input layer contains a number 
of neurons equal to the number of delayed measurements 
allowed to build the network model. In our case, there 
are four inputs to the network. They are p(i-l), p ( i - 2 ) ,  
p(i - 3) and p(i - 4). p ( i  - 1) is the observed faults per 
day before the current day. The hidden layer consists of 
two nonlinear neurons connected to p ( i  - 1) and @(i - 2) 
and two linear hidden neurons connected to p ( i  - 3) and 
p ( i  - 4). The output layer consists of one linear output 
neuron producing the estimated value of the fault. The 
hidden units are fully connected to both the input and 
output. The hidden and output layers nodes have linear 
activation functions. 

6.2 Training and Testing 

The neural network was trained with different sets of ini- 
tial weights until the best set of weights were calculated. 
The SSE was minimized to a small value. We used the 
NNs weights developed from the training case to test the 
network performance. The NNs model has been tested 
with the rest of the collected data which represents 30% 
of the collected data set. The sum square error of the 
training and testing, in NN case, is given in Table 2. In 
Figures 1 to 6 we are showing the training and testing 
results for various projects using NNs. Also, the predic- 
tion error in each case is provided. 

Actual and estimated responses using NNc Training case 
l e  
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Figure 1: (a) Actual and Estimated Faults (b) Prediction 
error: Military Application 

Actual and Estimated responses using NNs- Testing case 
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Figure 2: (a) Actual and Estimated Faults (b) Prediction 
error: Military Application 



Project Name I a0 

Military I 3.7427 
I Real Time Control i 2.3977 i 0.8898 i 0.0730 i -0.1549 i 0.1612 I 

a1 a2 a3 1 a4 

1.0087 -0.0181 -0.2301 1 0.2249 

I Operating System I 0.4034 I 1.0621 I -0.0841 I 0.2673 I -0.2392 
I I I I I 

, I v I Project Name I SSE-AR4 
I Military I 5.7092 

Table 1: Results for the estimation of a's using LSE 

" 

SSE-NNs SSE-AR4 SSE-NNs 
5.5409 168.541 160.3887 

I I Training I I I  Testinp: I I 

Real Time Control 
Operating System 

2.4745 1.7988 1.3680 1.2542 
4.3482 4.2928 10.8850 9.9623 

Table 2: A Comparison between AR4 and NN models in both training/testing cases 

Actual and estimated responses using NNs- Training case 
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Figure 3: (a) Actual and Estimated Faults (b) Prediction 
error: Real Time Control Application 

Figure 4: (a) Actual and Estimated Faults (b) Prediction 
error: Real Time Control Application 

472 



Adual and esfnnated responses using NNs- Training case 
I I I I I I 

250 

m- 

150 

100 

- 

- 

- 

E] - 
I I I 

20 40 60 80 100 120 140 160 180 

E m  difference 

7 Conclusions and Future Work 

We have shown that neural network can be used for 
building software reliability growth models. NNs were 
able to provide models with small SSE than the regres- 
sion model in all considered cases. If a regression model 
with higher order have been considered probably less 
SSE is obtained. However, the number of the regression 
model parameters will be increased. This will require 
more observations for providing reliable estimate of the 
parameters. At present, we are investigating the use of 
evolutionary computations in to solve the software reli- 
ability growth modeling problem. 
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Figure 5: (a) Actual and Estimated Faults (b) Prediction 
error: Operating System Application 
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Figure 6: (a) Actual and Estimated Faults (b) Prediction 
error: Operating System Application 
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